Abstract

Alpha2-adrenoceptor agonist has been reported to produce inhibition of arginine vasopressin release, diuresis, and sympatholytic effects. However, its mechanisms of central action remain incompletely understood. Hypothalamic paraventricular nucleus (PVN) neurons, which are in direct contact with noradrenergic synapses and are controlled by the hyperpolarization-activated currents, are called Ih (H current). The effect of dexmedetomidine, a highly selective and potent agonist, at alpha2 adrenoceptors on Ih is unknown. The purpose of this study was to examine the effects of dexmedetomidine on the PVN neuron, which is involved in the arginine vasopressin release and autonomic regulation. The authors investigated the effects of dexmedetomidine on the membrane properties in PVN magnocellular neurons and an Ih in PVN parvocellular neurons with a whole cell patch clamp technique using a rat brain slice preparation. Dexmedetomidine dose-dependently hyperpolarized PVN magnocellular neurons. In the voltage clamp mode, dexmedetomidine induced an outward current, with a reversal potential of -94 mV, and this was shown to depend on the external concentration of K. Pretreatment with Ba or peptide toxin tertiapin blocked hyperpolarization induced by dexmedetomidine. The effect of dexmedetomidine was blocked by an alpha2-adrenoceptor antagonist, yohimbine. Ih was suppressed dose dependently by dexmedetomidine in PVN parvocellular neurons. Pretreatment with Cs occluded the Ih suppression by dexmedetomidine. Yohimbine blocked the Ih suppression by dexmedetomidine. The Ih sensitive to dexmedetomidine was weakly modulated by intracellular cyclic adenosine monophosphate. Dexmedetomidine inhibited PVN magnocellular neurons by activation of the G protein-coupled inwardly rectifying K current and inhibited PVN parvocellular neurons by suppression of Ih.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call