Abstract
The control of micturition depends on reflex mechanisms, however, it undergoes modulation from cortex, pons and medullary areas. This study investigated if the activation of 5-HT3 receptors in the medulla influences the urinary bladder (UB) regulation in rats. Isoflurane female Wistar rats were submitted to catheterization of the femoral artery and vein for mean arterial pressure (MAP) and heart rate (HR) recordings and injection of drugs, respectively. The UB was cannulated for intravesical pressure (IP) measurement. The Doppler flow probe was placed around the left renal artery for renal conductance (RC) recordings. Phenylbiguanide (PB) and granisetron (GN) were injected into the 4th brain ventricle in rats with guide cannulas implanted 5 days prior to the experiments; or PB and GN were randomly injected intravenously or applied topically (in situ) on the UB. PB injection into 4th V significantly increased IP (68.67 ± 11.70%) and decreased MAP (−29 ± 6 mmHg) compared to saline (0.34 ± 0.64% and −2 ± 2 mmHg), with no changes in the HR and RC. GN injection into the 4th V did not significantly change the IP and RC compared to saline, nevertheless, significantly increased MAP (25 ± 4 mmHg) and heart rate (36 ± 9 bpm) compared to saline. Intravenous PB and GN only produced cardiovascular effects, whilst PB but not GN in situ on the UB evoked increase in IP (111.60 ± 30.36%). Therefore, the activation of 5HT-3 receptors in medullary areas increases the intravesical pressure and these receptors are involved in the phasic control of UB. In contrast, 5-HT3 receptors in the medulla oblongata are involved in the pathways of the tonic control of the cardiovascular system. The activation of 5-HT3 receptors in the bladder cause increase in intravesical pressure and this regulation seem to be under phasic control as the blockade of such receptors elicits no changes in baseline intravesical pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.