Abstract

Novel two-dimensional (2D) oxides are of great interest for photocatalysis because of their superlative physical features, namely, large surface areas, short charge diffusion pathways, high crystallinity and easy surface modification. However, most 2D oxides suffer from weak visible light absorption and severe photogenerated carrier recombination. Nitrogen doping can successfully narrow the bandgap of 2D oxides but can hardly improve the charge separation. In this work, we pre-dope nitrogen into 2D titanate nanosheets (HTiO), followed by surface processing with solution plasma. By dual modification of nitrogen doping and solution plasma processing (SPP), the modified 2D titanate nanosheets (N-HTiO-SPP) display broad absorption extending to the visible light region and the healing of oxygen vacancies brought about by nitrogen doping. Compared with HTiO and nitrogen doped titanate (N-HTiO), a higher removal rate and mineralization rate towards the photocatalytic degradation of acetaldehyde were achieved over N-HTiO-SPP under solar light. This work provides a powerful way to activate 2D wide bandgap semiconductors for enhanced photocatalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call