Abstract

The nucleus locus coeruleus (LC) plays an important role in analgesia produced by opioids and by modulation of the descending noradrenergic pathway. The functional role of μ-opioid receptors (μOR) in regulation of the excitability of spinally projecting LC neurons has not been investigated. In the present study, we tested the hypothesis that activation of presynaptic μ-opioid receptors excites a population of spinally projecting LC neurons through attenuation of γ-aminobutyric acid (GABA)-ergic synaptic inputs. Spinally projecting LC neurons were retrogradely labeled by a fluorescent dye injected into the spinal dorsal horn of rats. Whole-cell current- and voltage-clamp recordings were performed on labeled LC neurons in brain slices. All labeled LC noradrenergic neurons were demonstrated by dopamine-β-hydroxylase (DβH) immunofluorescence. In 37 labeled LC neurons, ( d-Ala 2, N-Me-Phe 4,Gly-ol 5)-enkephalin (DAMGO) significantly increased the discharge activity of 17 (45.9%) neurons, but significantly inhibited the firing activity of another 15 (40.5%) cells. The excitatory effect of DAMGO on seven labeled LC neurons was diminished in the presence of bicuculline. DAMGO significantly decreased the frequency of GABA-mediated miniature inhibitory postsynaptic currents (mIPSCs) in all nine labeled LC neurons. However, DAMGO had no effect on glutamate-mediated miniature excitatory postsynaptic currents (mEPSCs) in 12 of 15 neurons. Furthermore, DAMGO significantly inhibited the peak amplitude of evoked inhibitory postsynaptic currents (eIPSCs) in all 11 labeled neurons, but had no significant effect on the evoked excitatory postsynaptic currents (eEPSCs) in 10 of these 11 neurons. Thus, data from this study suggest that activation of μ-opioid receptors excites a population of spinally projecting LC neurons by preferential inhibition of GABAergic synaptic inputs. These findings provide important new information about the descending noradrenergic modulation and analgesic mechanisms of opioids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.