Abstract

To develop new radical synthesis strategies, a profound understanding of the electronic transfer mechanism is critical. An activation model called relayed proton-coupled electron transfer (relayed-PCET) was developed and investigated for chiral phosphoric acid-catalyzed diradical reactions by density functional theory (DFT). The driving force of electron transfer from the nucleophile to the electrophile is the proton transfer that occurs via the chiral phosphoric acid (CPA) catalyst to the electrophile. Moreover, the origins of the selectivity can be explained by distortion of the catalyst, favorable hydrogen bonding, and strong interactions of the substrates with substituents of the CPAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call