Abstract

The activation kinetics of N-methyl- d-aspartate (NMDA) channels in outside-out patches from cultured hippocampal neurons were analyzed to determine the number of glutamate and glycine binding sites per channel. Following rapid steps into high concentrations of glutamate, the activation time course was concentration-independent and limited by transitions between the shut, but fully liganded state and the open state. At lower concentrations, ligand binding was rate-limiting. The resulting sigmoidal activation time course was best fitted by a kinetic model with two glutamate binding sites. Glycine concentration jumps in the continuous presence of glutamate were also best fitted with a two-site model. Agonist and coagonist binding were better described by an independent, rather than a sequential model. We suggest that the NMDA receptor is at least a tetramer containing four ligand binding subunits, assuming a single binding site per subunit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.