Abstract
We reported that high-mobility group Box-1 (HMGB1) was involved in excitoneurotoxicity in the retina. HMGB1 is known to activate nuclear factor kappa B (NF-κB). However, the role of NF-κB in excitotoxicity is still controversial. Here, we demonstrated that NF-κB activation induced by NMDA led to the retinal neurotoxicity. Male Sprague–Dawley rats were used, and NMDA (200 nmol/eye) and bovine HMGB1 (15 μg/eye) were intravitreally injected. Triptolide (500 pmol/eye), BAY 11-7082 (500 pmol/eye), and IMD-0354 (7.5 nmol/eye), NF-κB inhibitors, were co-injected with NMDA or HMGB1. Retinal sections were obtained seven days after intravitreal injection. Cell loss in the ganglion cell layer was observed in the HMGB1- and the NMDA-treated retina. All of the NF-κB inhibitors used in this study reduced the damage. BAY 11-7082 reduced the expression of phosphorylated NF-κB 12 h after NMDA injection, upregulation of GFAP immunoreactivity induced by NMDA 12 and 48 h after NMDA injection, and the number of TUNEL-positive cells 48 h after NMDA injection. The results suggest that NF-κB activation is one of the mechanisms of the retinal neuronal death that occurs 48 h after NMDA injection or later. Prevention of NF-kB activation is a candidate for the treatment of retinal neurodegeneration associated with excitotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.