Abstract

Chirality is common in nature, which determines the high enantioselectivity of living systems. Selecting suitable chiral configurations is of great meaning for nanostructures to function better in biological systems. In this study, chiral Co3O4-H2TPPS-Au (CoHAu) nanoassemblies are constructed to accelerate the production ∙OH by consuming D-glucose (D-Glu, widely spread in nature) based on their outstanding enantioselective cascade-catalytic abilities. In particular, D-CoHAu nanoassemblies are more effective in the catalytic conversion of D-Glu than L-CoHAu nanoassemblies. This phenomenon is due to the stronger binding affinity of D-CoHAu nanoassemblies indicated by the lower Km value. Moreover, D-CoHAu nanoassemblies display excellent consumption-ability of D-Glu and production of ∙OH in living cells, which can eliminate senescent cells effectively based on their intracellular enantioselective cascade-catalysis. This research establishes the foundation for bio-mimicking nanostructures with unique functionalities to regulate abnormal biological activities better.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call