Abstract
A number of studies have documented a critical role for tumor-specific CD4(+) cells in the augmentation of immunotherapeutic effector mechanisms. However, in the context of an extensive tumor burden, chronic stimulation of such CD4(+) T cells often leads to the up-regulation of both Fas and Fas ligand, and coexpression of these molecules can potentially result in activation-induced cell death and the subsequent loss of effector activity. To evaluate the importance of T cell persistence in an experimental model of immunotherapy, we used DO11 Th1 cells from wild-type, Fas-deficient, and Fas ligand-deficient mice as effector populations specific for a model tumor Ag consisting of an OVA-derived transmembrane fusion protein. We found that the prolonged survival of Fas-deficient DO11 Th1 cells led to a more sustained tumor-specific response both in vitro and in vivo. Importantly, both Fas- and Fas ligand-deficient Th1 cells delayed tumor growth and cause regression of established tumors more effectively than wild-type Th1 cells, indicating that resistance to activation-induced cell death significantly enhances T cell effector activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.