Abstract

The biosynthesis of cyclic monoterpenes (C(10)) generally requires the cyclization of an activated linear precursor (geranyldiphosphate) by specific terpene cyclases. Cyclic triterpenes (C(30)), on the other hand, originate from the linear precursor squalene by the action of squalene-hopene cyclases (SHCs) or oxidosqualene cyclases (OSCs). Here, we report a novel terpene cyclase from Zymomonas mobilis (ZMO1548-Shc) with the unique capability to cyclize citronellal to isopulegol. To our knowledge, ZMO1548-Shc is the first biocatalyst with diphosphate-independent monoterpenoid cyclase activity. A combinatorial approach using site-directed mutagenesis and modeling of the active site with a bound substrate revealed that the cyclization of citronellal proceeds via a different mechanism than that of the cyclization of squalene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.