Abstract

AbstractViscometric behavior of polyvinylpyrrolidone (PVP) was investigated for extremely dilute (0.002–0.010 g dL−1), dilute (0.02–0.10 g dL−1), and moderately dilute (0.20–1.00 g dL−1) solutions at 288.15, 290.15, 293.15, 295.15, 298.15, 300.15, 303.15, 305.15, 308.15, 311.15, and 313.15 K. The experimental data were plotted according to Jones–Dole, Fuoss, and Fedors equations. Intrinsic viscosity ([η]) variation with temperature indicated the existence of different hydrodynamic states of PVP in solution at different temperatures. The PVP was found to show polyelectrolyte behavior in extremely dilute solutions, probably attributable to the presence of partially polarizable >CO groups in the chain. Activation energy (ΔE), differential enthalpy (∂ΔH), entropy (∂ΔS), and free energy (∂ΔG) changes of viscous flow were derived from flow velocity and taken into account for interpretation of the results to better understand the hydrodynamic and conformational behavior of PVP. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 47–55, 2004

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.