Abstract

A steady, two-dimensional corner flame is established when fuel and oxidizer enter the reaction zone in mutually perpendicular directions. A model problem in which the velocity fields are linear functions of spatial position is utilized to study the resulting flame. The flame structure is comprised of a diffusion flame surrounded on either side by fuel-rich and fuel-lean partially premixed laminar flames, similar to, but distinct from, triple flames. Using suitable coordinate transformations and change of variables, the governing equations in the thermodiffusive approximation are recast into a form akin to classical triple flames, with the strain rate appearing as the eigenvalue. A new exact integral representation of the solution to the mixture fraction equation is then utilized and high activation energy asymptotics are applied to solve approximately for the resulting flame shape, the imposed strain rate and, most significantly, the position of flame stabilization. This theoretically predicted flame is computed numerically, and comparisons are made between theory and computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.