Abstract

The influence of the catalyst particle size in determining Fischer–Tropsch synthesis (FTS) performance for nano-structured iron catalysts was investigated. The catalysts were prepared by a microemulsion method and to achieve a series of catalysts with different iron particle size, the water-to-surfactant molar ratio (W/S) in the microemulsion system varied from 4 to 12. The results demonstrate that by decreasing the levels of active phase of the iron catalyst, the termination rates for chain growth are increased compared to the propagation rates. In addition, the activation energy for chain propagation is lower than for chain termination, and this difference (Et – Ep) for the hydrocarbon product distributions which is characterised by α1, is lower than the hydrocarbon product distribution which is characterised by α2 The results indicate the H2 concentration on the catalyst surface is decreased by increasing the catalyst particle size. Thus, the dependence of α (α1, and/or α2) on H2 partial pressures is increased by decreasing of catalyst particle size and the dependence of α2 on H2 partial pressures is weaker than for α1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.