Abstract

Detection of active areas in the brain by functional magnetic resonance imaging (fMRI) is a challenging problem in medical imaging. Moreover, determining the onset and end of activation signal at specific locations in 3-space can determined networks of temporal relationships required for brain mapping. We introduce a method for activation detection in fMRI data via wavelet analysis of singular features. We pose the problem of determining activated areas as singularity detection in the temporal domain. Overcomplete wavelet expansion at integer scales are used to trace wavelet modulus maxima across scales to construct maxima lines. Form these maxima lines, singularities in the signal are located corresponding to the onset and end of an activation signal. We present result for simulated phantom waveforms and clinical fMRI dat from human finger tapping experiments. Different levels of noise were added to two waveforms of phantom data. No assumptions about specific frequency and amplitude of an activation signal were made prior to analysis. Detection was reliable for modest levels of random noise, but less precise at higher levels. For clinical fMRI data, activation maps were comparable to those of existing standard techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.