Abstract

The study of chemical reactions between gold-containing heteronuclear oxide clusters and small molecules can provide molecular level mechanisms to understand the excellent activity of gold supported by metal oxides. While the promotion role of gold in alkane transformation was identified in the clusters with atomic oxygen radicals (O(-.)), the role of gold in the systems without O(-.) is not clear. By employing mass spectrometry and quantum chemistry calculations, the reactivity of Au2 VO3(+) clusters with closed-shell electronic structures toward ethane was explored. Both the dehydrogenation and ethene elimination channels were identified. It is gold rather than oxygen species initiating the C-H activation. The Au-Au dimer formed during the reactions plays important roles in ethane transformation. The reactivity comparison between Au2 VO3(+) and bare Au2(+) demonstrates that Au2 VO3(+) not only retains the property of bare Au2(+) that transforming ethane to dihydrogen, but also exhibits new functions in converting ethane to ethene, which reveals the importance of the composite system. This study provides a further understanding of the reactivity of metal oxide supported gold in alkane activation and transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call