Abstract
Strategy, Management and Health PolicyVenture Capital Enabling TechnologyPreclinical ResearchPreclinical Development Toxicology, Formulation Drug Delivery, PharmacokineticsClinical Development Phases I-III Regulatory, Quality, ManufacturingPostmarketing Phase IV Xanthine and adenosine derivatives, known to bind to recombinant rat A3 adenosine receptors stably expressed in Chinese hamster ovary cells, were characterized in a functional assay consisting of activation of A3 receptor-stimulated binding of [35S]GTPγS in rat RBL-2H3 cell membranes. 1,3-Dibutylxanthine-7-riboside-5'-N-methylcarboxamide (DBXRM, 7b), previously shown to inhibit adenylyl cyclase via rat A3 receptors with full efficacy, appeared to be a partial agonist at the rat A3 receptor of RBL-2H3 cells. Full agonists, such as Cl-IB-MECA or I-AB-MECA, were more potent and effective than the partial agonist DBXRM in causing desensitization of rat A3 receptors, as indicated by loss of [35S]GTPγS binding. At A1 receptors, antagonism of agonist-elicited inhibition of rat adipocyte adenylyl cyclase was observed for several xanthine-7-riboside derivatives that had been shown to be full agonists at rat A3 receptors. A new xanthine riboside (3'-deoxyDBXRM, 7c) was synthesized and found to be a partial agonist at rat A3 receptors and an antagonist at rat A1 receptors. Thus, it is possible for the same compound to stimulate one adenosine receptor subtype (A3) and block another subtype (A1) within the same species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.