Abstract

Cognitive dysfunction is a common symptom in Parkinson’s disease (PD). Serotonin4 (5-HT4) receptors are richly expressed in the dorsal hippocampus (dHIPP) and play an important role in cognitive activities. However, the mechanism underlying the role of dHIPP 5-HT4 receptors in PD-related cognitive dysfunction remains unclear. Here we found that unilateral 6-hydroxydopamine lesions of the medial forebrain bundle increased the protein expression of 5-HT4 receptors in the dHIPP, decreased hippocampal theta rhythm, and impaired working memory and hippocampus-dependent memory in the T-maze and hole-board test, respectively. Both activation and blockade of dHIPP 5-HT4 receptors (agonist BIMU8 and antagonist GR113808) improved working memory and hippocampus-dependent memory in the lesioned rats, but not in sham rats. Activation of dHIPP 5-HT4 receptors increased hippocampal theta rhythm in the lesioned rats. The neurochemical studies showed that injection of BIMU8, GR113808 or GR113808/BIMU8 in the dHIPP increased the levels of dopamine in the medial prefrontal cortex (mPFC), dHIPP and amygdala, and the level of 5-HT in the amygdala in the lesioned rats, but not in sham rats. Injection of GR113808 or GR113808/BIMU8 into the dHIPP also increased the levels of noradrenaline in the mPFC, dHIPP and amygdala only in the lesioned rats. These results suggest that activation or blockade of dHIPP 5-HT4 receptors may improve the cognitive impairments in parkinsonian rats, which may be due to the increase of hippocampal theta rhythm, up-regulated expressions of 5-HT4 receptors in the dHIPP and the changes in the levels of monoamines in the relative brain areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.