Abstract

To provide a sound data basis for the safety analyses of the HCPB TBM system in ITER, the afterheat and activity inventories were assessed making use of a code system that allows performing 3D activation calculations by linking the Monte Carlo transport code MCNP and the fusion inventory code FISPACT through an appropriate interface. A suitable MCNP model of a 20° ITER torus sector with an integrated TBM of the HCPB PI (plant integration) type in the horizontal test blanket port was developed and adapted to the requirements for coupled 3D neutron transport and activation calculations. Two different irradiation scenarios were considered in the coupled 3D neutron transport and activation calculations. The first one is representative for the TBM irradiation in ITER with a total of 9000 neutron pulses over a 3 (calendar) years period. The second (conservative) irradiation scenario assumes an extended irradiation time over the full anticipated lifetime of ITER. The radioactivity inventories, the afterheat and the contact gamma dose were calculated as function of the decay time. Data were processed for the total activity, afterheat and contact dose rates of the TBM, its constituting components and materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call