Abstract

Abstract A neutron generation system was developed to induce fissile fission in a lead slowing down spectrometer (LSDS) system. The source neutron is one of the key factors for LSDS system work. The LSDS was developed to quantify the isotopic contents of fissile materials in spent nuclear fuel and recycled fuel. The source neutron is produced at a multilayered target by the (e,γ)(γ,n) reaction and slowed down at the lead medium. Activation analysis of the target materials is necessary to estimate the lifetime, durability, and safety of the target system. The CINDER90 code was used for the activation analysis, and it can involve three-dimensional geometry, position dependent neutron flux, and multigroup cross-section libraries. Several sensitivity calculations for a metal target with different geometries, materials, and coolants were done to achieve a high neutron generation rate and a low activation characteristic. Based on the results of the activation analysis, tantalum was chosen as a target material due to its better activation characteristics, and helium gas was suggested as a coolant. In addition, activation in a lead medium was performed. After a distance of 55 cm from the lead surface to the neutron incidence, the neutron intensity dramatically decreased; this result indicates very low activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.