Abstract

For realizing the commercialization of Li-metal batteries (LMBs), the discharge-blocking obstacles under ultra-low temperatures must be conquered besides the long-term reversibility. Nevertheless, commercial carbonate-based electrolytes are not only incompatible with the aggressive Li anode, but also have poor fluidity at low temperatures. The prevailing chain-ether-based electrolyte designing tactics, such as the common-used DME, improve the affinity with Li metal to some extent, but the multiple Lewis-acid binding sites of chain ethers are not conducive to the de-solvation of Li+. Herein, for the first time, the cheap cyclic-type tetrahydrofuran (THF) with ultra-low melting point and weak solvating power is adopted for designing an original THF-based localized saturated electrolyte (Tb-LSCE), demonstrating excellent adaptability for low-temperature LMBs. Computational and experimental evidence verify the original solvated structure is modified via the addition of fluorinated antisolvent, further contributing to the Li+-THF de-solvation. Therefore, equipped with Tb-LSCE, the assembled Li-NCM523 cells achieve powerful anti-polarization capability at low temperatures (73.3% discharge capacity retention at -30 °C). Furthermore, the unique solvated sheath structure of Tb-LSCE also regulates the interfacial chemistry and uniformity of Li depositing behavior, highlighted by the outstanding reversibility of Li-Li cells (a long lifespan of exceeding 1600 h at 30 °C and 1100 h at -30 °C, respectively) and Li-NCM523 cells (80.7%, 160 cycles) even remarkably stable operation within 50 cycles (ultra-high cathode loading of 19.7 mg cm−2). This work outlines a cheap and effective electrolyte design solution to activate the potential LMBs under practical conditions, especially those operated under cryogenic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.