Abstract

Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of transcription factors, which is highly expressed in olfactory chemosensory tissues, the main olfactory epithelium and vomeronasal epithelium (VNE) in mice. The vomeronasal sensory neurons in the VNE detect pheromones in order to regulate social behaviors such as mating and aggression; however, the physiological role of ATF5 in the vomeronasal sensory system remains unknown. In this study, we found that the differentiation of mature vomeronasal sensory neurons, assessed by olfactory marker protein expression, was inhibited in ATF5-deficient VNE. In addition, many apoptotic vomeronasal sensory neurons were evident in ATF5-deficient VNE. The vomeronasal sensory neurons consist of two major types of neuron expressing either vomeronasal 1 receptor (V1r)/Gαi2 or vomeronasal 2 receptor (V2r)/Gαo. We demonstrated that the differentiation, survival and axonal projection of V2r/Gαo-type rather than V1r/Gαi2-type vomeronasal sensory neurons were severely inhibited in ATF5-deficient VNE. These results suggest that ATF5 is one of the transcription factors crucial for the vomeronasal sensory formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.