Abstract

Intestinal tuft cells, a chemosensory cell type in mucosal epithelia that secrete interleukin (IL)-25, play a pivotal role in type 2 immune responses triggered by parasitic infections. Tuft cell-derived IL-25 activates type 2 innate lymphoid cells (ILC2) to secrete IL-13, which, in turn, acts on intestinal stem or transient amplifying cells to expand tuft cells themselves and mucus-secreting goblet cells. However, the molecular mechanisms of tuft cell differentiation under type 2 immune responses remain unclear. The present study investigated the effects of the deletion of activating transcription factor 5 (ATF5) on the type 2 immune response triggered by succinate (a metabolite of parasites) in mice. ATF5 mRNAs were expressed in the small intestine, and the loss of the ATF5 gene did not affect the gross morphology of the tissue or the basal differentiation of epithelial cell subtypes. Succinate induced marked increases in tuft and goblet cell numbers in the ATF5-deficient ileum. Tuft cells in the ATF5-deficient ileum are assumed to be a subtype of intestinal tuft cells (Tuft-2 cells) marked by the transcription factor Spib. Exogenous IL-25 induced similar increases in tuft and goblet cell numbers in wild-type and ATF5-deficient ilea. IL-13 at a submaximal dose enhanced tuft cell differentiation more in ATF5-deficient than in wild-type intestinal organoids. These results indicate that the loss of ATF5 enhanced the tuft cell-ILC2 type 2 immune response circuit by promoting tuft cell differentiation in the small intestine, suggesting its novel regulatory role in immune responses against parasitic infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call