Abstract

Activating transcription factor 2 (ATF2) is a tumor driver gene implicated in several human malignancies. This study aimed to determine the roles of ATF2 and its related molecules in the tumorigenesis of hepatocellular carcinoma (HCC). According to the Pan-cancer bioinformatics system, ATF2 is highly expressed in HCC. An increase in the expression of ATF2 was identified in clinically collected tumor tissues and procured HCC cells. The silencing of ATF2 reduced the viability, colony formation, invasion, and death resistance of HepG2 and SNU-398 cells in vitro. ATF2 promoted the transcription of Wolf-Hirschhorn syndrome candidate 1 (WHSC1) by binding to its promoter. WHSC1 further increased the expression of DNA topoisomerase II alpha (TOP2A) in HCC by inducing the dimethylation of histone H3 lysine 36 (H3K36me2) in the TOP2A promoter region. TOP2A activated the oncogenic PI3K/AKT signaling pathway. Further overexpression of WHSC1 activated the TOP2A/PI3K/AKT axis and restored the malignant behaviors of HCC cells suppressed by ATF2 silencing in vitro. In summary, this study demonstrated that, depending on WHSC1, ATF2 can activate the TOP2A/PI3K/AKT signaling cascade to promote the tumorigenesis of HCC. ATF2, WHSC1, and TOP2A may serve as potential targets in managing HCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.