Abstract

Non-Hodgkin lymphomas comprise a heterogenous group of disorders which differ in biology. Although response rates are high in some groups, relapsed disease can be difficult to treat, and newer approaches are needed for this patient population. It is increasingly apparent that the immune system plays a significant role in the propagation and survival of malignant cells. Immune checkpoint blocking agents augment cytotoxic activity of the adaptive and innate immune systems and enhance tumor cell killing. Anti-PD-1 and anti-CTLA-4 antibodies have been tested as both single agents and combination therapy. Although success rates with anti-PD-1 antibodies are high in patients with Hodgkin lymphoma, the results are yet to be replicated in those with non-Hodgkin lymphomas. Some lymphoma histologies, such as primary mediastinal B cell lymphoma (PMBL), central nervous system, and testicular lymphomas and gray zone lymphoma, respond favorably to PD-1 blockade, but the response rates in most lymphoma subtypes are low. Other agents including those targeting the adaptive immune system such as TIM-3, TIGIT, and BTLA and innate immune system such as CD47 and KIR are therefore in trials to test alternative ways to activate the immune system. Patient selection based on tumor biology is likely to be a determining factor in treatment response in patients, and further research exploring optimal patient populations, newer targets, and combination therapy as well as identifying biomarkers is needed.

Highlights

  • Immune therapies have changed the paradigm of cancer treatment, Hodgkin and non-Hodgkin lymphomas

  • Cytotoxic T lymphocyte antigen 4 (CTLA-4/CD152) and programmed cell death protein 1 (PD-1/CD279) of the B7 family, among others, are inhibitory molecules which result in reduced T cell activity and function

  • This review will discuss the role of these antibodies as well as other immune checkpoint inhibitors (CPI) in non-Hodgkin lymphoma (NHL)

Read more

Summary

Introduction

Immune therapies have changed the paradigm of cancer treatment, Hodgkin and non-Hodgkin lymphomas. Lymphoma cells, being a part of the immune system, are themselves immunologically active and modulate the host immune response to allow growth of the malignant cell. Interactions between lymphoma cells and the TME influence T cell function are crucial for tumor progression. Checkpoint proteins act as natural regulators of T cell function and help to modulate the T cell response by creating a balance between activation and inhibition [1]. Cytotoxic T lymphocyte antigen 4 (CTLA-4/CD152) and programmed cell death protein 1 (PD-1/CD279) of the B7 family, among others, are inhibitory molecules which result in reduced T cell activity and function. Monoclonal proteins targeting immune checkpoints such as anti-CTLA-4 antibodies and anti-PD-1 and anti-PD-1 ligand (PD-L1 and PD-L2) antibodies have shown promising results in the treatment of solid tumors and hematological malignancies. This review will discuss the role of these antibodies as well as other immune checkpoint inhibitors (CPI) in non-Hodgkin lymphoma (NHL)

Role of Tumor Microenvironment in Immune Escape
Biological Basis of Checkpoint Blockade in NHL
Clinical Efficacy of Checkpoint Inhibition
Results
Adverse Events with Checkpoint Blockade
Biomarkers
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call