Abstract
The feasibility of tailoring the moisture resistance of bioadhesives by activating relaxation-controlled diffusion mechanisms is demonstrated herein using gelatin, a hydrophilic biopolymer, as a model biobased resin for engineered wood products. The effect of gelatin-to-water concentration and tannin addition on the governing kinetics of water transport in gelatin-based bioadhesives was investigated in this work. Time-dependent flexural mechanical properties of laminated (a) gelatin and (b) gelatin–tannin wood veneer composites conditioned at both moderate and high humidity were characterized and compared to oriented strand board and plywood. Results indicate that increases in both gelatin and tannin content not only decrease rates of water uptake, volumetric swelling, and maximum moisture contents of gelatin-based resins, but also increasingly induce relaxation-controlled moisture diffusion behavior, which implies short-term moisture resistance and long-term moisture affinity. This behavior could be leveraged to address both in-service (i.e., strength, stiffness) and out-of-service (i.e., rapid biodegradation) requirements for engineered wood products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.