Abstract

Organic electrode materials have gained attention for their tunable structures and sustainability, but their low electronic conductivity requires the use of large amounts of carbon additives (30 wt %) and low mass loadings (<2 mg cm-2) in electrodes. Here, we synthesize dibenzo[b,i]phenazine-5,7,12,14-tetrone (DPT) as a cathode active material for an aqueous Zn battery and find that Zn2+ storage dominates the cathode reaction. This battery demonstrates high capacity (367 mAh g-1), high-rate performance, and superlong life (12000 cycles). Remarkably, despite DPT's insulative nature, even with a high mass loading (10 mg cm-2) and only 10 wt % carbon additives, the DPT-based cathode exhibits promising performance due to trace dissolved discharge product (DPTx-). During discharge, the DPT is reduced to trace amounts of dissolved DPTx- at the cathode surface, which in turn reduces the remaining solid DPT as a redox mediator. Furthermore, dissolution-redeposition results in the reduction of DPT size and the formation of pores, further activating the electrode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.