Abstract
Small changes in a catalyst’s composition, modification, and/or integration into a reactor can have significant yet often poorly understood effects on (electro)catalysis. Here we demonstrate the careful tailoring of Ru/La0.25Ce0.75O2−x catalysts through the post-synthesized hydrothermal treatment together with control over the Ru loadings to create hydroxyl groups and electronic restructuring for ammonia electrosynthesis. When integrated into a protonic ceramic electrolyzer, the in situ formed Ce3+−OH/Ru sites facilitate both the NN decoupling and NH formation at 400 °C and 1 bar of N2, boosting the ammonia production rate (2.92 mol h−1 m−2) up to 100-fold higher than the current state-of-the-art electrolyzers. Moreover, such catalysts and electrolyzer design concepts can be readily tuned to more complex applications such as coproducing ammonia and other chemicals with hydrocarbons as direct hydrogen sources. The creation of coordinated saturated support –OH/metal sites in the advanced electrolyzer offers an attractive approach for future clean-energy and green-chemical industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.