Abstract

Tuning an oxide/metal interface is of critical importance for the performance enhancement of many heterogeneous catalytic reactions. However, catalytic oxidation occurring at the interface between non-reducible oxide and metal has been challenging, since non-reducible oxides hardly lose their lattice oxygen (OL) or dissociate O2 from the gas phase. In this work, a ZnO monolayer film on Au(111) is used as an inverse catalyst to investigate CO oxidation occurring at the ZnO/Au(111) interface via high pressure scanning tunneling microscopy. Surface science experiments indicate that oxygen intercalation under the ZnO monolayer film, termed ZnO/O/Au(111), can be achieved via a surface reaction with 1 × 10-6 mbar O3. Subsequent exposure of the formed ZnO/O/Au(111) surface to mbar CO at room temperature leads to the recovery of the pristine ZnO/Au(111) surface. Theoretical calculations reveal that OL adjacent to intercalated oxygen (Oint) is activated due to the OL-Zn-Oint bonding and surface corrugation, which can be directly involved in CO oxidation. Subsequently, Oint migrates to the formed oxygen vacancy from the subsurface resuming the pristine ZnO structure. These results thus reveal that oxygen intercalation underneath single-layer ZnO will strongly boost the oxidation reaction via activating adjacent lattice oxygen atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call