Abstract

In this study, a stable multilayered adduct of maghemite surfactant and clay was created by sandwich-like electrostatic self-assembly of cationic polyelectrolytes of cetyltrimethylammonium bromide (CTAB) with illite kaolinite (IKaol) clay. The adsorptive property of IKaol/CTAB towards MB from . Aquatic system uptake was investigated. Its characteristics were analysed using X-ray powder diffraction, Fourier transform-infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and the zero point of charge. To attain higher performance of the IKaol/CTAB for MB adsorption, the primary key factors that influence the MB dye, such as (A: loading CTAB into the composite matrix of IKaol), adsorbent dose (B: 0.02–0.06 g), pH (C: 4–10), temperature (D: 30–60 °C), and time (E: 5–60 min) , were optimised using the Box–Behnken design method. The obtained results show that the highest MB removal efficiency of 86.24 % was observed at the following significant interactions: AB, BC, and AC and at optimum adsorption operation parameters (A: 0%, B: 0.06 g, C: 7, D: 45◦C, and E: 17.5 min). At these optimum conditions, the best adsorption capacity of MB dye (114.94 mg/g) was recorded at 45°C. The most effective isotherms and kinetic models were the Freundlich and pseudo-second-order kinetic models. The MB dye adsorption mechanism by IKaol can be assigned to several interactions, such as electrostatic attractions, n-π interaction, and hydrogen bonding interactions. The results of this study demonstrate the viability of IKaol as a promising precursor for the creation of an efficient adsorbent that can be used to remove cationic dye from an aqueous environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call