Abstract

IntroductionThe transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e−/−) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e−/− mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice.MethodsMurine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e−/− mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels.ResultsOnly minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e−/− mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e−/− cartilage explants. OA progression was significantly enhanced in the Tfap2e−/− mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e−/− articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT.ConclusionsWe reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.

Highlights

  • The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice

  • Though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e−/− mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e−/− cartilage explants

  • We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity

Read more

Summary

Introduction

The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA) Despite these findings, adult mice deficient for AP-2ε (Tfap2e−/−) do not exhibit an obviously abnormal cartilaginous phenotype. Most components of the vertebrate skeleton are formed through a complex, multistep process termed endochondral ossification [1] This process starts during early embryonic development, when mesenchymal cells condense at specific locations and prefigure future skeletal elements [2]. Subsequent differentiation of these cells results in chondrocytes that synthesize an abundance of extracellular matrix (ECM) proteins, including collagen type II and proteoglycans (for example, aggrecan). This “articular cartilage” acts as a shock absorber, minimizing peak pressures on the subchondral bone, and provides a smooth, low-friction gliding surface for efficient joint movement [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.