Abstract

Similar to proton exchange membrane fuel cell, anion-exchange membrane fuel cell is also a significant energy conversion device for achieving the utilization of clean hydrogen energy. However, the cathodic alkaline oxygen reduction reaction (ORR) is kinetically not favored and usually requires platinum-group metal (PGM) catalysts such as Pt/C to reduce the overpotential. The major challenge in using PGM-free catalysts for ORR is their low efficiency and poor stability, which urgently demands new concepts and strategies to address this issue. Herein, we controllably manufactured a N, S-co doped graphene encapsulating uniform cobalt-rich sulfides (Co8FeS8@NSG) by a universal synthesis strategy. After encapsulation, electron transfer from the encapsulated cobalt-rich sulfides to the doped graphene was greatly promoted, which effectively optimizes the electronic structure of the doped graphene, thereby enhancing the ORR activity of the doped graphene surface. Consequently, the Co8FeS8@NSG exhibits enhanced ORR activity with a higher half-wave potential of 0.868 V (versus reversible hydrogen electrode, vs. RHE) when compared with pure NSG (0.765 V vs. RHE). Density functional theory calculations further confirm that the construction of interface for NSG encapsulating cobalt-rich sulfides could conspicuously elevate the ORR activity through slightly positively-charged C active site and thus simultaneously enhancing electronic conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.