Abstract

The earth-abundant transition metal manganese (Mn) has been shown to activate dinitrogen (N2) and store nitrogen (N) as nitride for subsequent chemical reaction, for example, to produce ammonia (NH3). Chemical looping ammonia synthesis (CLAS) is a practical way to use Mn nitride by contacting nitride with gaseous hydrogen (H2) to produce ammonia (NH3). Here, the dynamic process of N atoms penetrating into solid Mn has been investigated. Nitride layer growth was modeled to quantitate and predict the storage of activated N in Mn towards designing CLAS systems. The N diffusion coefficient (DN) and reaction rate constant K for the first-order nitridation reaction were estimated at 6.2 ± 5.5 × 10-11 m2/s and 4.1 ± 3.5 × 10-4 1/s, respectively, at atmospheric pressure and 700 °C. Assuming spherical particles of Mn with a diameter of < 10 μm, about 56.8 metric tons of Mn is sufficient to produce a metric ton of NH3 per day using CLAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.