Abstract

BackgroundCorticotropin-releasing factor (CRF) neural systems are important stress mechanisms in the central amygdala (CeA), bed nucleus of stria terminalis (BNST), nucleus accumbens (NAc), and related structures. CRF-containing neural systems are traditionally posited to generate aversive distress states that motivate overconsumption of rewards and relapse in addiction. However, CRF-containing systems may alternatively promote incentive motivation to increase reward pursuit and consumption without requiring aversive states. MethodsWe optogenetically stimulated CRF-expressing neurons in the CeA, BNST, or NAc using Crh-Cre+ rats (n = 37 female, n = 34 male) to investigate roles in incentive motivation versus aversive motivation. We paired CRF-expressing neuronal stimulations with earning sucrose rewards in two-choice and progressive ratio tasks and investigated recruitment of distributed limbic circuitry. We further assessed valence with CRF-containing neuron laser self-stimulation tasks. ResultsChannelrhodopsin excitation of CRF-containing neurons in the CeA and NAc amplified and focused incentive motivation and recruited activation of mesocorticolimbic reward circuitry. CRF systems in both the CeA and NAc supported laser self-stimulation, amplified incentive motivation for sucrose in a breakpoint test, and focused “wanting” on laser-paired sucrose over a sucrose alternative in a two-choice test. Conversely, stimulation of CRF-containing neurons in the BNST produced negative valence or aversive effects and recruited distress-related circuitry, as stimulation was avoided and suppressed motivation for sucrose. ConclusionsCRF-containing systems in the NAc and CeA can promote reward consumption by increasing incentive motivation without involving aversion. In contrast, stimulation of CRF-containing systems in the BNST is aversive but suppresses sucrose reward pursuit and consumption rather than increase, as predicted by traditional hedonic self-medication hypotheses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.