Abstract

Prussian blue analogue (PBA)-type metal hexacyanoferrates are considered as significant cathodes for zinc batteries (ZBs). However, these PBA-type cathodes, such as cyanogroup iron hexacyanoferrate (FeHCF), suffer from ephemeral lifespan (≤1000 cycles), and inferior rate capability (1 A g-1 ). This is because the redox active sites of multivalent iron (Fe(III/II)) can only be very limited activated and thus utilized. This is attributed to the spatial resistance caused by the compact cooperation interaction between Fe and the surrounded cyanogroup, and the inferior conductivity. Here, it is found that high-voltage scanning can effectively activate the C-coordinated Fe in FeHCF cathode in ZBs. Thanks to this activation, the Zn-FeHCF hybrid-ion battery achieves a record-breaking cycling performance of 5000 (82% capacity retention) and 10 000 cycles (73% capacity retention), respectively, together with a superior rate capability of maintaining 53.2% capacity at superhigh current density of 8 A g-1 (≈97 C). The reversible distortion and recovery of the crystalline structure caused by the (de)insertion of zinc and lithium ions is revealed. It is believed that this work represents a substantial advance on PBA electrode materials and may essentially promote application of PBA materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.