Abstract

Two-dimensional (2D) PtSe2 has emerged as a promising ultrathin electrocatalyst due to its excellent catalytic activity and conductivity. However, the PtSe2 basal plane is inert for the hydrogen evolution reaction (HER), which greatly limits its electrocatalytic performance. Here, in light of theoretical calculations, we designed a facile approach for activating the 2D PtSe2 basal plane for the HER by simultaneously introducing atomic vacancies of Se, Pt, and Pt clusters through a mild Ar plasma treatment. We tracked changes in the structures and catalytic performance of PtSe2 by combining microscopic imaging, spectroscopic mapping, and electrochemical measurements in microcells. The highest performance of the activated PtSe2 basal plane that we obtained was superior to those of other 2D transition metal dichalcogenide-based electrocatalysts measured in microcells in terms of the overpotential, the Tafel slope, and the exchange current density. This study demonstrates the great potential of activated 2D PtSe2 as an ultrathin catalyst for the HER and provides new insights on the rational design of 2D electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.