Abstract

Immune cell migration is a fundamental process that enables immunosurveillance and immune responses. Understanding the mechanism of immune cell migration is not only of importance to the biology of cells, but also has high relevance to cell trafficking mediated physiological processes and diseases such as embryogenesis, wound healing, autoimmune diseases and cancers. In addition to the well-known chemical concentration gradient based guiding mechanism (i.e. chemotaxis), recent studies have shown that lymphocytes can respond to applied physiologically relevant direct current (DC) electric fields by migrating toward the cathode of the fields (i.e. electrotaxis) in both in vitro and in vivo settings. In the present study, we employed two microfluidic devices allowing controlled application of electric fields inside the microfluidic channel for quantitative studies of lymphocyte electrotaxis in vitro at the single cell level. The first device is fabricated by soft-lithography and the second device is made in glass with integrated on-chip electrodes. Using both devices, we for the first time showed that anti-CD3/CD28 antibodies activated human blood T cells migrate to the cathode of the applied DC electric field. This finding is consistent with previous electrotaxis studies on other lymphocyte subsets suggesting electrotaxis is a novel guiding mechanism for immune cell migration. Furthermore, the characteristics of electrotaxis and chemotaxis of activated T cells in PDMS microfluidic devices are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.