Abstract

Within the various subtypes of ALL, patients with a BCR-ABL-positive background as well as with a genetic change in the KMT2A gene have by far the worst survival probabilities. Interestingly, both subtypes are characterized by highly activated tyrosine kinases. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is often constitutively activated in ALL. The protein expression of SHIP1 is decreased in most T-ALL and in some subgroups of B-ALL. In this study, we analyzed the expression of SHIP1 protein in detail in the context of groups with aberrant activated tyrosine kinases, namely BCR-ABL (Ph+) and Flt3 (KMT2A translocations). We demonstrate that constitutively activated Src kinases downstream of BCR-ABL and receptor tyrosine kinases reduce the SHIP1 expression in a SHIP1-Y1021 phosphorylated-dependent manner with subsequent ubiquitin marked proteasomal degradation. Inhibition of BCR-ABL (Imatinib), Flt3 (Quizartinib) or Src-Kinase-Family (Saracatinib) leads to significant reconstitution of SHIP1 protein expression. These results further support a functional role of SHIP1 as tumor suppressor protein and could be the basis for the establishment of a targeted therapy form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.