Abstract

The biodegradation of dimethyl phthalate (DMP) was investigated under fermentative conditions in this study. The nature of the intermediate compounds and the extent of mineralization were probed using high-pressure liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) methods. The fermentative bacteria were able to biodegrade the DMP under anaerobic conditions, with the biodegradation rate of 0.36 mg DMP/(L x h). The results demonstrated that the DMP degradation under fermentative conditions followed the modified Gompertz model with the correlation coefficient of 0.99. Monomethyl phthalate (MMP) and phthalic acid (PA) were detected as the intermediates of DMP biodegradation. During the experiment, MMP was rapidly produced and removed; however, PA accumulated as the biodegradation was slower throughout the course of the experiment. The COD(Cr) concentration decreased from 245.06 to 72.01 mg/L after the experimental operation of 20 d. The volume of methane produced was 3.65 ml over a period of 20 d and the amount of methane recovered corresponded to 40.2% of the stoichiometric value. The COD(Cr) variation and methane production showed that the DMP could not be completely mineralized under the fermentative conditions, which implied that the fermentative bacteria were not able to biodegrade DMP entirely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call