Abstract

The effects of shock loads of 1-chloro-2,4-dinitrobenzene (CDNB); cadmium; 1-octanol; 2,4-dinitrophenol (DNP); weakly complexed cyanide; pH 5, 9, and 11; and high ammonia levels on activated sludge biomass growth, respiration rate, flocculation, chemical oxygen demand removal, dewaterability, and settleability were studied. For all chemical shocks, except ammonia and pH, concentrations that caused 15, 25, and 50% respiration inhibition were used to provide a single pulse shock to sequencing batch reactor systems containing a nitrifying or non-nitrifying biomass. Cadmium and pH 11 shocks were most detrimental to all processes, followed by CDNB. The DNP and cyanide primarily affected respiration, while pH 5, pH 9, octanol, and ammonia did not affect the treatment process to a significant extent. A chemical source-process effect matrix is provided, which we believe will aid in the development of methods that prevent and/or attenuate the effects of toxic shock loads on activated sludge systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.