Abstract

Decidualization of human endometrial stromal (ES) cells in vitro is induced by cAMP analogs and ligands that elevate cellular cAMP levels. A marker of this differentiation process is the activation of the decidual PRL (dPRL) promoter. In a primary ES cell culture system we show that relaxin not only acutely but permanently elevates cellular cAMP levels and leads to induction of PRL secretion after 6 days Northern and Western blot analyses revealed that all regulatory subunit isoforms (RI alpha, RI beta, RII alpha, and RII beta) and catalytic subunits C alpha and C beta of protein kinase A (PKA) are expressed in ES cells. Transcript levels of PKA subunit isoforms are not altered during decidualization but in decidualized ES cells, exposed to relaxin for more than 6 days a significant reduction of RI alpha protein level occurs, whereas levels of all other forms remain unchanged. Reduction of R subunits might result in a net increase in free C subunit activity. This alteration is not due to a change in the mitotic state of the cells, as proliferating cell nuclear antigen is evenly expressed in undifferentiated and differentiated ES cell cultures. In transient transfections of undifferentiated ES cells, the dPRL promoter is activated by 8-bromo-cAMP and the C subunit (C beta) of PKA. This induction as well as the differentiation-dependent activity of the dPRL promoter in transfected decidualized cells are effectively abolished by the coexpression of protein kinase inhibitor. We demonstrate that 332 bp of the dPRL promoter are sufficient to mediate full inducibility by cAMP. Activation of the dPRL promoter by cAMP in ES cells occurs in two steps: an initial weak induction within 12 h and a subsequent, much more pronounced induction after 12 h. The secondary induction is not seen with a control construct driven by a consensus cAMP response element (CRE) linked to a minimal promoter and is absent from a uterine cell line that does not express the endogenous dPRL gene. The early response of the dPRL promoter depends upon a noncanonical CRE at position -12, as mutation of this sequence leads to abolition of the early, but not the delayed, induction. The major activation depends upon a different region within 332 bp of the dPRL promoter; is probably indirect, as it follows different kinetics compared to a classical CRE-mediated response; and is specific to ES cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call