Abstract

Cytoskeletal abnormalities with accumulation of ubiquilated inclusions in the anterior horn cells are a pathological hallmark of both familial and sporadic amyotrophic lateral sclerosis (ALS) and of mouse models for ALS. Phosphorylated neurofilaments besides ubiquitin and dorfin have been identified as one of the major components of the abnormal intracellular perikaryal aggregates. As we recently found that p38 mitogen-activated protein kinase (p38MAPK) colocalized with phosphorylated neurofilaments in spinal motor neurons of SOD1 mutant mice, a model of familial ALS, we investigated whether this kinase also contributed to the inclusions found in ALS patients and SOD1 mutant mice. Intense immunoreactivity for activated p38MAPK was observed in degenerating motor neurons and reactive astrocytes in ALS cases. The intracellular immunostaining for activated p38MAPK appeared in some neurons as filamentous skein-like and ball-like inclusions, with an immunohistochemical pattern identical to that of ubiquitin. Intracellular p38MAPK-positive aggregates containing ubiquitin and neurofilaments were also found in the spinal motor neurons of SOD1 mutant mice. Our observations indicate that activation of p38MAPK might contribute significantly to the pathology of motor neurons in ALS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.