Abstract

Activated nitrogen-doped carbons (ANCs) were prepared by carbonization/activation approach using aminated polyvinyl chloride (PVC) as precursor. ANCs exhibit larger porosities and higher specific surface areas than those of their nitrogen-free counterparts for the same KOH/carbon ratio. The specific surface area of ANC-1 is up to 1,398 m2 g−1 even at a low KOH/carbon ratio of 1:1. Fourier transform infrared spectroscopy investigation of the nitrogen-enriched resin precursor indicates the efficient dehydrochlorination of PVC by ethylenediamine at a low temperature. The nitrogen content and the population of nitrogen functionalities strongly depend on the KOH/carbon ratios and decrease drastically after KOH activation as seen from the elemental and X-ray photoelectron spectroscopy analysis. The surface concentration of N-6 and N-Q almost disappears and the dominant nitrogen groups become N-5 after KOH activation. The highest specific capacitance of ANCs is up to 345 F g−1 at a current density of 50 mA g−1 in 6 M KOH electrolyte. ANCs also exhibit a good capacitive behavior at a high scan rate of 200 mV s−1 and an excellent cyclability with a capacitance retention ratio as high as ∼93 % at a current density of 2,000 mA g−1 for 5,000 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call