Abstract

During vertebrate eye development, the optic vesicle originating from the neuroectoderm is partitioned into a domain that will give rise to the neural retina (NR) and another that will give rise to the retinal pigmented epithelium (RPE). Previous studies have shown that ectopic expression of FGFs in the RPE induces RPE-to-NR transdifferentiation. Similarly, a naturally occurring mutation of the transcription factor Mitf in mouse resulted in the formation of a second neural retina in place of the dorsal RPE, but the putative signaling pathway linking FGF to Mitf regulation is presently unknown. In cultures of neural crest-derived melanocytes, the MAPK pathway was recently shown to target the Mitf transcription factor for ubiquitin-dependent proteolysis, resulting in a rapid degradation and downregulation. In the present study, we show that ectopic expression of a constitutively activated allele of MEK-1, the immediate upstream activator of the MAPK ERK, in chicken embryonic retina in ovo, induces transdifferentiation of the RPE into a neural-like epithelium that is correlated with a downregulation of Mitf expression in the presumptive RPE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.