Abstract

Here we report the first implementation of activated ion electron transfer dissociation (AI-ETD) for top down protein characterization, showing that AI-ETD definitively extends the m/z range over which ETD can be effective for fragmentation of intact proteins. AI-ETD, which leverages infrared photon bombardment concurrent to the ETD reaction to mitigate nondissociative electron transfer, was performed using a novel multipurpose dissociation cell that can perform both beam-type collisional dissociation and ion-ion reactions on an ion trap-Orbitrap hybrid mass spectrometer. AI-ETD increased the number of c- and z-type product ions for all charge states over ETD alone, boosting product ion yield by nearly 4-fold for low charge density precursors. AI-ETD also outperformed HCD, generating more matching fragments for all proteins at all charge states investigated. In addition to generating more unique fragment ions, AI-ETD provided greater protein sequence coverage compared to both HCD and ETD. In all, the effectiveness of AI-ETD across the entirety of the m/z spectrum demonstrates its efficacy for robust fragmentation of intact proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.