Abstract

We conduct nonequilibrium molecular dynamics simulations to measure the shear stress sigma, the average inherent structure energy E{IS}, and the effective temperature T{eff} of a sheared model glass as a function of bath temperature T and shear strain rate gamma. For T above the glass transition temperature T0, the rheology approaches a Newtonian limit and T{eff}-->T as gamma-->0, while for T<T0, sigma approaches a yield stress and T{eff} approaches a limiting value near T0. In the shear-dominated regime at high T, high gamma or at low T, we find that sigma and E{IS} each collapse onto a single curve as a function of T{eff}. This indicates that T{eff} is controlling behavior in this regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.