Abstract

Initiation of epithelial-to-mesenchymal transition (EMT) is common in papillary thyroid carcinoma (PTC) and may contribute to its metastasis. Aims of the present study are to investigate whether and how the C-X-C motif chemokine ligand (CXCL)-5/C-X-C motif receptor 2 (CXCR2) axis affects PTC metastasis, with a focus on the EMT process. Herein, two PTC cell lines, KTC-1 and B-CPAP cells, identified as CXCR2-positive cells were used as the cell model. We found that a 24-h stimulation of 1 or 10 nM recombinant human CXCL5 (rhCXCL5) enhanced the migration and invasion of both KTC-1 and B-CPAP cells without affecting their proliferation. The migration- and invasion-promoting effects of rhCXCL5 were attenuated if CXCR2 was silenced by its specific short hairpin RNAs (shRNAs). EMT initiation is defined as downregulation of epithelial-cadherin (E-cadherin) and upregulation of N-cadherin, Vimentin and Snail. Our data showed that rhCXCL5-induced EMT in PTC cells was suppressed by CXCR2 shRNA. Furthermore, the active CXCL5-CXCR2 axis enhanced the phosphorylation of Akt at Ser 473 residue and that of glycogen synthase kinase-3 (GSK-3β) at Ser 9 residue, and accelerated the nuclear accumulation of β-catenin in PTC cells. Re-expression of the active form of β-catenin in PTC cells rescued their impaired invasiveness caused by the blockade of CXCL5-CXCR2 axis. In addition, CXCL5 and CXCR2 were overexpressed in the metastatic lymph nodes obtained from 18 patients with PTC. In summary, our study demonstrates that the activated CXCL5-CXCR2 axis contributes to the metastatic phenotype of PTC cells by modulating Akt/GSK-3β/β-catenin pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call