Abstract

The process of manufacturing an activated carbon nonwoven made by cotton fiber was investigated. The study was focused on cotton nonwoven formation, carbonization, activation, and characterization of the activated carbon nonwoven. Pyrolysis of the cotton carbonization was analyzed using TGA. There was a considerable decrease in weight loss in the region between 250°C to 400°C and the proper carbonized temperature was 400°C. The SEM examination indicated that the surface area of cotton fiber was increased significantly because the inside hollow of cotton fiber was widely opened and some small agglomerated particles were gasified after activation. Absorbability of the activated carbon nonwoven was evaluated using an instrument of inverse gas chromatography. Dispersive surface energy, specific free energy, and total surface energy all indicated this trend: Carbonized Cotton > Activated Cotton > Raw Cotton. The activated carbon nonwoven exhibited the potential for use as high adsorbent and absorbent materials. They are light weight and bulky, advantageous in protective clothing applications and other consumer and industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.