Abstract
This paper deals with the adsorption of heavy metal ions on the surface of carbonaceous materials obtained via the chemical activation of biomass. Waste plum stones, pine sawdust and horsetail herb were used as the precursors of carbonaceous adsorbents. The effect of the precursor type and preparation procedure on the physicochemical properties of activated biocarbons and their sorption abilities towards Pb(II) and Cu(II) ions have been checked. The obtained micro-mesoporous activated biocarbons were characterized by determination of elemental composition and ash content, the number of surface functional groups and pH of water extracts as well as textural study based on low temperature nitrogen adsorption/desorption and scanning electron microscopy. Additionally, the electrokinetic studies including solid surface charge density and zeta potential determination were performed. Moreover, the adsorption data modelling (equilibrium and kinetics), XPS results analysis and comparison of parameters characterizing electrical double layer formed at the solid-liquid interface enabled the specification of the mechanism of heavy metals binding with the activated biocarbons surface. The maximum adsorption capacity towards copper and lead ions (177.5 and 178.1 mg/g, respectively) was found for plum stone-based activated biocarbon. For all carbonaceous materials, better fit to the experimental data was achieved with a Langmuir isotherm than a Freundlich one. In turn, a better fit of the kinetics data was obtained using the pseudo-second order model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.