Abstract

A malignant tumor remains one of the leading causes of deaths across the world. Thus, diagnosis of tumor development with noninvasive visualizing methods is significant for tumor therapy. Herein, an activatable two-photon NIR fluorescent probe DHQ-Rd-PN for in vivo imaging of peroxynitrite in a tumor was elaborately designed. The probe demonstrated an increased NIR emission in response to peroxynitrite in vitro, which ensured that the probe detects ONOO- in cell and in vivo. Cellular imaging results disclosed that the probe was competent to detect adscititious ONOO- level change in HeLa cells, as well as endogenous ONOO- concentration in lipopolysaccharides (LPS) and IFN-γ-stimulated RAW 264.7 cells. Additionally, zebrafish in vivo imaging revealed that the probe accumulated in the pancreas and was lightened up by the addition of ONOO-. Remarkably, the probe can be harnessed to image an ONOO- production profile in xenograft 4T1 tumor mice by both one-photon and two-photon in vivo fluorescence imaging. Benefiting with the two-photon excitable properties and NIR emissive properties, the probe can be used for noninvasive in vivo imaging of ONOO- in the onset and development of tumors for the first time. This work provided a noninvasive and efficient detection method for ONOO- in a tumor, which would find more applications in tumor diagnosis and therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call