Abstract

Biomolecules are fundamental for various chemical and biological processes of living organisms. High-resolution in situ imaging of the dynamics and local distribution of biomolecules may facilitate better interpretation of diverse complex cell events in the biomedicine field. In different advanced imaging tools, fluorescence imaging-based activatable organic probes can be noninvasively and effortlessly internalized into cells and can be easily modified, which is essential for the in situ imaging of targets in living organisms. We here briefly summarize the existing general design strategies of activatable organic probes for retaining the fluorescence signal inside cells. We particularly describe the bioapplication of these probes for the in situ bioimaging. This review is expected to promote the development of new molecular tools for extending the application of these in situ imaging strategies to other biomolecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call